2018 Bedok South Secondary School Secondary 4 Science(Chemistry) PRELIM Marking Scheme

Paper 1: 30 Marks

21	22	23	24	25	26	27	28	29	30
D	В	С	D	Α	С	D	В	Α	С
31	32	33	34	35	36	37	38	39	40
Α	В	Α	D	Α	В	С	С	В	С

Answe	er		
A 1	(a)	CO Prevents blood from absorbing oxygen which causes headaches, giddiness or may lead to death.	1
			1
	(b)	N ₂ and CO ₂ (both must be correct)	1
	(c)	CO ₂ and O ₂ (both must be correct)	1
	(d)	NO ₂ and SO ₂ (both must be correct)	1
A2	(ai)	[Total: 5 marks]	
		Isotope Protein Neutron Electron	
		Sulfur-\$2 16 32 16 ≥ 16 16	1
	\bigcap	Suntur-34 16 = 18 16	1
	(ali)	Each sulfur isotope has different relative abundance/ percentage/ amount. When the average of the masses of the 2 sulfur isotope is taken, there is decimal (any phrase to the effect)	1
	(bi)	Correct valence electron for sulfur and hydrogen	1
		Correct number of shared electrons (2 single bond)	1
	(bii)	[structure] hydrogen sulfide is a simple covalent molecule/compound	1
		[charge carrier] there are no free moving electrons/charge carrier to conduct electricity. [bonding]	1
		[Total: 8 marks]	

A3	(ai)	Salt: Silver chlo	ride					1	
(salt pre)		Reason: It is an <u>insoluble</u> salt.						1	
	(aii)	Salt: Potassium	nitrate (SPA	– titration (r	neustralisa	ation))		1	
		Reagent 1: pota	ent 1: <u>potassium hydroxide</u> Reagent 2: <u>nitric acid</u> (both correct)						
	(b)	Use							
		Substance	to make car battery	to make road surface	to reduce		t	2	
		Calcium silicate (SLAG)		V					
		Calcium hydroxide(slaked lime)			V				
		Argon				~~			
		Sulfuric acid	V				1		
		All correct – 2 m	arks 3/2 cor	rect – 1 ma	rk 1 cort				
						[Total: 6	marksj		
A4	(a)	Difference in boi	ling point			11 0		1	
	(b)	Name: <u>Butene</u> formula: <u>C₄H₈</u>		\setminus))		U		1	
					_ </th <th>[Total: 3</th> <th>marks]</th> <th></th>	[Total: 3	marks]		
A 5	(a)	2 Al (<u>s</u>) + Fe ₂ O correct)	$3 (\underline{\mathbf{s}}) \rightarrow 2 \overline{\mathbf{p}} \mathbf{e}$	<u>1</u>) + Al ₂ 08	35	(all must be		1	
~	(bi)	Element	Oxidation start at the start	1 / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	on state e end	Oxidised or reduced?			
	1	dxygeh	- AFT		2	unchanged			
2		Atuminium	+3		3	Oxidised		1 1	
		Aluminium la avi			Į				
	(bii) <	Aluminium is oxidised while iron is reduced, since oxidation and reduction occur <u>simultaneously</u> , Thermit reaction is a redox reaction.					1		
	(c)	Exothermic reac	•		•			1	
							1		
	(d)	[P1] Aluminium o	·					3 pt – 2 M	
		[P2] Aluminium (_		ucture,	2 pt –	
								1M	
						[Total: 8	marks]		
A6	(ai)	carbon						1	

-			
	(aii)	[P1] Carbon will disrupt the orderly arrangement of iron, (ALLOY)	3 pt –
		[P2] making it more <u>difficult</u> for the iron atoms to slide past each other,	2 M 2 pt –
		[P3] thus <u>increasing the strength</u> of iron. (any phrasing to the effect)	1M
	(b)	[P1] zinc is more reactive than iron / zinc has higher tendency to lose	1
		its electrons,	
		[P2] zinc will preferentially <u>corrode</u> <u>in place of iron</u> .	1
	(c)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	1
	(d)	The earth's mineral ores are limited and are non-renewable. Recycling helps to conserve the limited resources in our earth and make them last longer.	1
		With a decrease of mining for ores, land will be free for other uses eg, agriculture.	
		Recycling means saves the environment from pollution as unsightly scrap metals is removed from the environment.	
		[any one, reject any answer about saving cost]	_
_		[Total: 7 marks]	
A7	(ai)	Number of moles of propane: 44/44 = 1 mole	1
	(aii)	Number of moles of CO_2 : 3 moles Volume of CO_2 : 3 x 24 = 72 dm ³ (must include correct units, no ecf)	1
	(bi)	Propene is <u>unsaturated/ contains C=C double bond</u> , thus it is able to undergo <u>addition reaction</u> . OR Propane is saturated, contains all single covalent bond, thus unable to undergo addition reaction. (any phrasing with similar meaning)	1
	(bii)	[test] Add (aqueous) bromine solution to propane and propene.	1
		[result] reddish brown colour of bromine will become colourless in propene but remains unchanged in propane.	1
	(biii)	Polymer is non-biodegradable and thus will [effect] remain in the environment for a long time, thus causing land pollution/ constantly in need to find land to bury them.	1
<	1	Polymer, when burnt, will release toxic gases to the environment thus, causing air pollution. [any one]	
	(c)	F	1
		monomer (alkene)	
		[Total: 8 marks]	_
В8	(a)	[P1] An acid is a substance which <u>produces hydrogen ions when it is dissolved in water.</u>	1
		[P2] Example: Sulfuric acid reacts with reactive metal to produce salt and hydrogen gas/ sulfuric acid reacts with carbonates to produce salt,	Any

water and carbon dioxide gas. Sulfuric acid react with base/alkali to produce salt and water. [P3] An alkali is a substance which produces hydroxide ions when it is dissolved in water. [P4] Example: sodium hydroxide reacts with ammonium salt to form salt, water and ammonia gas. (full credit if formulae/ chemical equation	9 1
dissolved in water. [P4] Example: sodium hydroxide reacts with ammonium salt to form salt,	
given)	
(b) $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$ 1	
(c) Green solid A: copper(II) carbonate 1	
colourless gas B: <u>carbon dioxide</u>	
blue solution C: Copper(II) sulfate	
blue precipitate D : copper(II) hydroxide	
(d) Sulfuric acid was added to the green solid, thus the sulfate ion might have come from sulfuric acid instead.	
[Total: 10 marks]	
[Etemp] when temperature is increases, speed of chemical reaction 1 increases.	
[Econc] when concentration decreases, speed of chemical reaction decreases.	
[Rtemp] when temperature increases, particles gains kinetic energy and move faster. Frequency of effective collision will increases.	
[Rconc] when concentration decreases, <u>number of particles per unit</u>	
volume decrease. Frequency of effective collision will decreases.	
[collision theory – 1 mark]	
(b) Measurement of volume of Measurement of decrease in mass hydrogen gas	
[1] Cotton Wool Appa atus	
gas syringe [1] Hydrochloric Acid up 1	
Magnesium Ribbon Freaction mixture [1] Magnesium Ribbon [1]	
Student will record the <u>volume of</u> hydrogen gas [1] produced at regular interval. [1] Student will record the decrease in mass of reaction mixture [1] at regular interval [1].	
Speed of reaction will decrease with time.	

		[Total: 10 marks]	
B10	(a)	halogen	1
	(b)	[electronic configuration] E.C of Fluorine: 2.7, E.C of chlorine is 2.8.7 (state both to get 1 mark)	1
		Since they both have <u>7 valence electron</u> , thus they are placed in group VII.	1
	(ci)	Yellow	1
	(cii)	It is <u>lighter</u> in colour than chlorine, thus Fluorine is placed <u>above</u> <u>chlorine</u> in group VII.	1
	(ciii)	[observation] colourless solution turns reddish brown.	1
	1	[explanation] fluorine is more reactive than bromine, thus it will displace bromine from potassium bromide and produce bromine.	1
	(di)	[physical] cannot conduct electricity/ black colour/ solid at room temperature [any one] (do NOT write "high/low" melting point)	1
		[chemical] gain 1 electron to form anion/ least reactive in group VII/ reacts with metal to form ionic compound/ reacts with non-metal to form covalent compounds. [any one]	1
	(dii)	MgAtz	1
		[Total: 10 marks]	