
Section A

Answer all questions in the spaces provided.

A1 The diagram below shows the formulae of some gases found in polluted air.

Choose formulae from the diagram to answer the following questions (a) to (d). Each may be use once, more than once or not at all.

(a)	Give the formula of a gas that is produced by incomplete combustion of fuels. State harmful health effect of this gas.	the
		[2]
(b)	Give the formulae of two gases that are produced by reactions in catalytic converters and	s. [1]
(c)	Give the formulae of two gases that are involved in both respiration and photosynthematical and	sis. [1]
(d)	Give the formulae of two gases that produce acid rain. and	[1]
	[Total: 5 ma	

A2	Sulfur	and sulfur	compounds	are common	in	the	environme	nt
A Z	Odilai	and Sand	Compounds			uic		ı

- (a) A sample of sulfur from a volcano contained two different types of sulfur isotopes: sulfur-32 and sulfur-34.
 - (i) Complete the table below to show the atomic structure of each isotope of sulfur.

lastons		Number of	
Isotope	Proton	Neutron	Electron
Sulfur-32			
Sulfur-34			

		· · .						
	L							[2]
	(ii)		atomic mass ot a whole nu		·	·	the relative atomi	
								[2]
(b)		of the gases period is a poisono					sulfide. H ₂ S. Hy	drogen'
	(i)		t-and-cross of how outer ele			the bonding	in a hydrogen	sulfide
								[2]
	(ii)	Explain, in to electricity.	erms of bondi	ng and strud	cture, why h	nydrogen sulfi	de gas does not d	conduct
								[2]
							[Total: 8	marks]

A3 The table below shows some salts and products that contain them.

(a)

(i)

Salt	product
Silver chloride	Photographic film
Potassium nitrate	fertiliser
Zinc sulfate	Health supplement

Explain your reasoning.	
Salt:	
Reason:	[2]

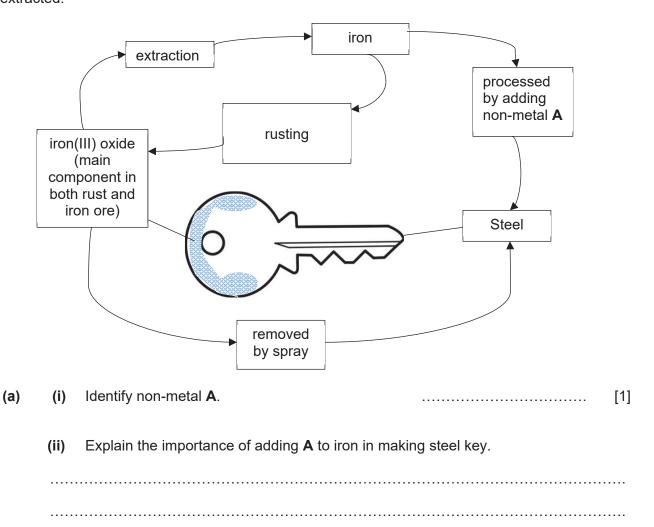
Which salt in the table can be made by **precipitation**?

(ii)	Which salt in the table can be made by titration ? Suggest two reagents needed to make this salt.
Salt:	

Odit.		
Reagent 1:	Reagent 2:	[2]

(b) Other substances are used to make a range of useful products. Put a tick $(\sqrt{})$ in one box in each row to show a correct use of each substance.

		U		
Substance	to make car battery	to make road surface	to reduce acidity in soil	to fill filament bulb
Calcium silicate				
Calcium hydroxide				
Argon				
Sulfuric acid				


[2]

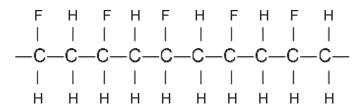
[Total: 6 marks]

44	In an	oil refinery petroleum is	s separated into	useful frac	ctions b	y fraction	al distillation.		
	(a)	What is the physical բ	property that allo	ws the va	rious fr	actions in	crude oil to l	oe separat	ted?
									[1]
	(b)	To meet the world's of to produce lighter frac	•				diesel unde	rgoes crad	cking
		C ₁₂ H	≥ 26	C ₆ H ₁₄	+	C ₂ H ₄	product P		
		Give the chemical na	me and formula	of the pro	duct P .				
		Chemical name:							
		Chemical formula:							[2]
							[Γotal: 3 m	
A 5	In The	hermit reaction is used	m powder react	s with iron	ı(III) oxi				
		hich runs into the gaps						e same un	ne.
	(a)	Complete the equation				•	•	0	[4]
		2 Al () + ()	re ₂ O ₃ ()		7 21	re () + Al ₂	203	[1]
	(b)	(i) The table show Complete the ta	s some informat able.	ion about	oxidati	on state c	hanges durin	g the read	ction.
		Element	Oxidation sta the start			on state a e end	t Oxidise	d or reduc	ed?
		Oxygen	-2			-2	un	changed	
		Aluminium							
		iron							
		(ii) Hence, or other	wise, explain wh	ny Thermit	reaction	on is a rec	lox reaction.		[2]
									 [1]

(c)	Is Thermit reaction an endothermic or exothermic reaction? Explain your answer.							
(d)	Predict if the melting point of aluminium oxide is high or low. Explain your answer in terms of structure and bonding.							
	[2]							
	[Total: 8 marks]							

A6 Common keys are made from steel. One problem with using steel is that the iron in steel will rust. The diagram shows the cycle of changes that happens when iron in a steel key rust and then extracted.

[2]
A shop sells a spray-on rust treatment. The spray contains particles of zinc. Explain how zinc prevents rust from forming.
[2]
Write a balanced chemical equation for the extraction of iron in the blast furnace. [1]
Though the extraction of iron from blast furnace is a relatively cheap process, steels are still widely recycled.
Explain the importance of recycling of metals such as iron.
[1]
[Total: 7 marks]
Propane burns completely in oxygen to form carbon dioxide and water. The equation for the reaction is
$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
(i) Calculate the number of moles in 44 g of propane.


A7

[1]

(ii) Hence, calculate the volume of carbon dioxide that is produced from 44 g of propane at room temperature and pressure.

			[2]
b)	(i)	State why propene can be made into polymer but propane cannot.	
			[1]
	(ii)	Describe a test to distinguish between propene and propane.	
			[2]
	(iii)	State one harmful effect of polymer to the environment.	
			[1]

(c) The figure below shows the structure formula of part of an addition polymer.

Deduce and draw the structural formula of the **monomer** from which this polymer is made.