Prelim Exam 2018 4E/5N Sc(Chem) Marking Scheme

Section A [1 mark each; 20 marks total]

1	2	3	4	5	6	7	8	9	10
В	D	С	D	В	Α	В	Α	В	D
11	12	13	14	15	16	17	18	19	20
J	Α	В	D	C	D	B	В	D	Α

Section B [45 marks total]

(b) B (c) B [1] It has only one type of atom. [1] (d) A [1] (ii) All have the same number of protons and electrons; 15 each. (iii) All have the same number of protons (15) / same proton number / same atomic number [1] (iii) same number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]	0000		[45 marks total]	94					
(c) B [1] It has only one type of atom. [1] (d) A [1] (i) It has the same number of protons and electrons; 15 each. (ii) All have the same number of protons (15) / same proton number / same atomic number of protons (15) / same proton number / same atomic number [4]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]	1	(a)	С	[1]					
It has only one type of atom. [1] [2] (d) A [1] 2 (a) (i) It has the same number of protons and electrons; 15 each. [1] (ii) All have the same number of protons (15) / same proton number / same atomic number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] [2] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]		(b)	В	[1]					
(d) A [1] 2 (a) (i) It has the same number of protons and electrons; 15 each. [1] (ii) All have the same number of protons (15) / same proton number / same atomic number [1] (iii) same number of protons (15) / same proton number / same atomic number [4]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]		(c)							
(ii) It has the same number of protons and electrons; 15 each. (iii) All have the same number of protons (15) / same proton number / same atomic number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			It has only one type of atom. [1]	[2]					
(ii) All have the same number of protons (15) / same proton number / same atomic number [1] (iii) same number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]		(d)	A	[1]					
(ii) All have the same number of protons (15) / same proton number / same atomic number [1] (iii) same number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]									
(iii) same number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]	2	(a)		[1]					
(iii) same number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			(ii) All have the same number of protons (15) / same proton number /						
(iii) same number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			same atomic number	[1]					
Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]				Lil					
Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			(iii) same number of protons (15) / same proton number / same atomic						
number [1] (b) (i) 2.8.5 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			number[4]:						
number [1] (b) (i) 2.8.5 / 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			Different number of neutrons / different nucleon number / different mass						
(b) (i) 2.8.5 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			*//						
(ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]			The state of the s	[2]					
complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]		(b)	(i) 2.8.5 2,8,5 [1]						
in valence shell [1]			(ii) non-metal because it accepts electrons / needs 3 electrons to						
			complete valence electron shell / because it is in Group V or 5 electrons						
			in valence shell [1]						
Note: need both non-metal and reason for one mark [2]			Note: need both non-metal and reason for one mark	[2]					

		NO '111 ' 11 ' 11 ' 11 ' 11 ' 11 ' 11 '					
3	(a)	NO will be oxidised by oxygen in air to form nitrogen dioxide. [1]					
		Nitrogen dioxide will then dissolve in rainwater to form nitric acid which caused acid rain. [1]	[2]				
	(b)	Calcium carbonate is very much less soluble than calcium hydroxide and calcium oxide. [1]					
		Thus, CaCO ₃ reacts slowly with acid / effective only in reducing acidity of soil / surface in contact / cannot penetrate soil to neutralize acid deeper down. [1]	[2]				
	(c)	The high temperatures of the car engines causes[1]					
	, ,	nitrogen in the air to react with oxygen in the air producing oxides of nitrogen. [1]					
	(d)	irritates the eyes and lungs and cause breathing difficulties [1]					
		high levels lead to inflammation of the lungs (bronchitis) [1]					
4	(a)	Step 2 Filter to remove excess cobalt(II) carbonate; [1]					
		Step 3 Heat the filtrate till saturation; [1]					
		Step 4 Cool to allow crystals to form, [0.5]					
		Step 5 Rinse crystals with a little distilled water to remove impurities and dry between sheets of filter paper; [0.5]	[2]				
			[3]				
	(b)	(i) CoCO₃ (s) + 2HCl (aq) → CoCb₂ (aq) + CO₂ (g) + H₂O (l) State symbols [1]; balanced chemical equation [1]	[2]				
			[2]				
		(ii) no of moles of HCl = $cv = 2 * (40/1000) = 0.08 \text{ mol}$ [1]					
		Mole ratio CoCO₃ : HCI					
		Fm egn 1 : 2					
		Fm data 0.04 : 0.08 [1]					
		Mass of CoCO ₃ = mol * molar mass = 0.04 * (59+12+48) = 0.04 * 119 = 4.76 g [1]					
		4.76 g of CoCO ₃ needed but 5.95 g was used. Hence, CoCO ₃ was in excess.					
		was III GACGSS.	[3]				

5	(a)	$magnesium \rightarrow X \rightarrow iron \rightarrow lead / \qquad \qquad Mg > X > Fe > Pb$	[1]			
	(b)	no / it will not react and zinc is more reactive / iron is less reactive; [1] ignore: zinc is reactive / iron is unreactive	[1]			
	(c)	A greenish ppt/solid [1] and a grey/silver solid are formed. [1]	[2]			
	(d)	Iron is reduced.[1]				
	The oxidation state of iron decreases from +3 in iron(III) oxide to 0 in iron. [1]					
6	(a) (i) Nitrate [1] All nitrates are soluble. [1] or Sulfate [1] All Ag ⁺ , Cu ²⁺ , Zn ²⁺ and Fe ³⁺ sulfates are soluble. [1]					
		(ii) Add sodium hydroxide, aluminium foil and warm. [0.5] Gas produced turns moist red litmus paper blue. [0.5] or Add barium nitrate / barium chloride. [0.5] A white precipitate is seen. [0.5]	[1]			
	(b)	B: silver chloride / AgCl [1] C: copper(II) hydroxide / Cu(OH) ₂ / iron(II) hydroxide / Fe(OH) ₂ [1]	[2]			
	(c)	The particles are in solid state. They vibrate at their fixed positions. [1]				
		They are closely packed in a orderly manner. [1]	[2]			
7	· / · / · / · · · · · · · · · · · · · ·					
	(b)	(ii) Contains only carbon and hydrogen atoms	[1]			
	(b)	$C_6H_{12} + 9O_2 \rightarrow 6CO_2 + 6H_2O$	[1]			
	(c)	HCI (1) C ₆ H ₁₁ CI (1)	[2]			

Section C (20 marks)

Section C (20 marks)								
8	(a)	(i) zinc displaces copper / zinc more reactive than copper; [1]						
		$Zn + CuCl_2 \rightarrow ZnCl_2 + Cu / Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}; [1]$						
		(ii) less steep (line) or lower gradient / (because of) decreased rate; [1]						
		ethanoic is a weak(er) acid / only partially ionised / dissociated / lower						
		concentration of hydrogen ions; [1];						
		graph 3 is below graph 1 and ends at the same volume as graph 1 [1]	[5]					
			[2]					
	(b)	3 marks from any 3 differences in observations e.g.						
		more bubbles with K;						
		• it /K moves faster (on water surface);						
		Li does not catch fire/K catches fire/K bursts into flame;						
		• it /K fizzes more than Li;						
	<	•it /K disappears rapidly;						
		•K explodes lithium does not explode;						
		K melts / ball with k/ lithium does not melt/ does not go into ball [3]						
		Products: lithium hydroxide [0.5]						
		potassium hydroxide; [0.5]						
		hydrogen/H ₂ [1]	[5]					

9	(a)	(i)	Phosphine is a liquid / gas at room condition [1] It is made up of 2 non-metals [1] which will form a covalent compound				
			which is a liquid / gas at room conditions. [1] /				
		Phosphine has low melting and boiling points [1] It is a simple covalent molecule [1] with weak intermolecular forces of					
			attraction. Hence little energy is needed to overcome them. [1] /				
			Phosphine does not conduct electricity in any state [1] It has no mobile ions [1]or mobile electrons to carry the current to conduct electricity. [1]				
			Any 2 points with explanations maximum [5]	[5]			
		(ii)	H				
	\langle		[1] for P, [1] for H	[2]			
	(b)	in t	ct with hydrogen or hydrogenation [1] the presence of a nickel catalyst at 60 °C (allow 50-200 °C) [1] cause vegetable oils are unsaturated or have carbon-carbon double				
		boı	nds (vegetable oils are hardened) to make them solid at room nperature or to make them useful as spreads/spreadable [1]	[3]			

10	(a)	(i) 2, 2, 3 [1] (s), (s), (g) [1]	[2]
		(iii) N N In pairs of bonds, [1] for 2 unshared electrons per N atom	[2]
		(iii) Mole of NaN ₃ = mass / molar mass	[2]
		It was not efficient as only 60 dm³ of N₂ was produced. [0.5]	[3]
	(b)	Cracking [1]	
		Big alkane \rightarrow smaller alkanes + smaller alkene (+ hydrogen) $C_{20}H_{42} \rightarrow C_{12}H_{26} + C_8H_{16}$ (any appropriate balanced equation) [1]	
		It undergoes cracking to produce small(er) molecules / alkanes hydrocarbons and alkenes or a named alkene [1]	[3]

Prelim Exam 2018 4E/5N Sc(Chem) Marking Scheme

Section B [45 marks total]

		[+5 marks total]		
				Marker's Comments
1	(a)	С	[1]	
	(b)	В	[1]	
	(c)	B [1]		
		It has only one type of atom. [1]	[2]	
	(d)	A \\	[1]	
2	(a)	(i) It has the same number of protons and		
		electrons; 15 each.	[1]	U
		(ii) All have the same number of protons (15)	11	
		same proton number / same atomic number		
		(iii) same number of protons (15) / same proton		
		number / same atomic number [t];		
		Different number of neutrons / different nucleon		
		number / different mass number [1]		
		viciniser / direction ridges ridinised [1]	[2]	
	(b)	(i) 2.8.5 / 2.8,5 [1]		
		(ii) non-metal because it accepts electrons / needs		
		3 electrons to complete valence electron shell /		
		because it is in Group V or 5 electrons in valence		
		shell [1]		
		Note: need both non-metal and reason for one mark	[2]	

3	(a)	NO will be oxidised by oxygen in air to form nitrogen dioxide. [1]		
		Nitrogen dioxide will then dissolve in rainwater to		
		form nitric acid which caused acid rain. [1]	[2]	
	/b)	Calcium carbonate is very much less soluble than	[2]	
	(b)	calcium hydroxide and calcium oxide. [1]		
		Thus, CaCO₃ reacts slowly with acid / effective only		
		in reducing acidity of soil / surface in contact / cannot		
		penetrate soil to neutralize acid deeper down. [1]	[2]	
	(c)	The high temperatures of the car engines causes[1]		
		nitrogen in the air to react with oxygen in the air		
		producing oxides of nitrogen. [1]	[2]	
	(d)	 irritates the eyes and lungs and cause breathing difficulties [1] 		
		> high levels lead to inflammation of the lungs		
	1	(bronchitis) [1]	[2]	
4	(a)	Step 2 Filter to remove excess cobalt(II) carbonate;		
	V	Step-3 Heat the filtrate till saturation; [1]		
		(0.\\)		
		Step 4 Cool to allow crystals to form; [0.5]		
		Step 5 Rinse crystals with a little distilled water to remove impurities and dry between sheets of filter		
		paper; [0.5]	[3]	

	(b)	(i) CoCO ₃ (s) + 2HCl (aq) → CoCl ₂ (aq) + CO ₂ (g) + H ₂ O (l) State symbols [1]; balanced chemical equation [2]
		(ii) no of moles of HCl = cv = 2 * (40/1000) = 0.08 mol [1] Mole ratio CoCO ₃ : HCl Fm eqn
		4.76 g of CoCO ₃ needed/but 5.95 g was used. Hence, CoCO ₃ was in excess. [3]
5	(a)	magnesium $\rightarrow X \rightarrow \text{iron} \rightarrow \text{lead} / \text{Mig} \gg X >$ Fe > Pb [1]
	(b)\	no / it will not react and zinc is more reactive / iron is less reactive; [1] ignore: zinc is reactive / iron is unreactive [1]
	(c)	A greenish pot/solid [1] and a grey/silver solid are formed. [1] [2]
	(d)	Iron is reduced.[1] The oxidation state of iron decreases from +3 in iron(III) oxide to 0 in iron. [1] [2]

6	(a)	(i) Nitrate [1]			
		All nitrates are soluble. [1] or			
		Sulfate [1]			
		All Ag ⁺ , Cu ²⁺ , Zn ²⁺ and Fe ³⁺ sulfates are soluble.			
		[1]	[2]		
		(ii) Add sodium hydroxide, aluminium foil and warm.			
		[0.5]			
		Gas produced turns moist red litmus paper blue.	(
		[0.5] or		7/	
		Add barium nitrata / barium ablarida [0.5]	ш		
		Add barium nitrate / barium chloride. [0.5]			
		A white precipitate is seen. [0.5]	<u> </u>		
	(b)	B: silver chloride / AgCl [1]			
		C: copper(II) hydroxide / Cu(OH) ₂ / iron(N)	ro1		
		hydroxide / Fe(OH) ₂ [1]	[2]		
	(c)	The particles are in solid state.			
		They vibrate at their fixed positions. [1]			
		They are closely packed in a orderly manner. [1]	[2]		
7	(a)	(i) Contains only carbon-carbon single bonds	[1]		
		(ii) Contains only carbon and hydrogen atoms	[1]		
	(b)	$C_6H_{12} + 9O_2 \rightarrow 6CO_2 + 6H_2O$	[1]		
<	(c)	HOI (4)	[2]		
	//	C6H11Cl (1)			

Section C (20 marks)

ethanoic is a weak(er) acid / only partially ionised / dissociated / lower concentration of hydrogen ions; [1]; graph 3 is below graph 1 and ends at the same volume as graph 1 [1].

	(b)	react with hydrogen or hydrogenation [1]		
	()	in the presence of a nickel catalyst at 60 °C (allow		
		50-200 °C) [1]		
		because vegetable oils are unsaturated or have		
		carbon-carbon double bonds (vegetable oils are		
		hardened) to make them solid at room temperature	[3]	
		or to make them useful as spreads/spreadable [1]		
10	(a)	(i) 2, 2, 3 [1]		
	()	(s), (s), (g) [1]		
			[2]	
		(ii)	11	
	1			
		[1] for 3 pairs of bonds, [1] for 2 unshared electrons		
_		per N atom	[2]	
	L	(iii) Mole of MaN ₃ = mass / molar mass		
V	_	= 130 / (23+ (14*3)) = 2 [1]		
		Mote ratio NaN ₃ : N ₂		
- 1	/)	Fmegn 2:3		
	//			
		Fm data 2 : 3 [0.5]		
		Vol of $N_2 = \text{mol } x 24$		
		$= 3 * 24 = 72 \text{ dm}^3$ [1]		
		It was not efficient as only 60 dm ³ of N ₂		
		was produced. [0.5]	[3]	
L		[0.0]	L J	

