Paper 3

Section A (45 marks)

Answer **all** questions in the spaces provided.

1 The apparatus shown in Fig 1.1 can be used to separate a mixture of 3 liquids, **A**, **B** and water.

A has a boiling point of 50 °C while **B** has a boiling point of 78 °C.

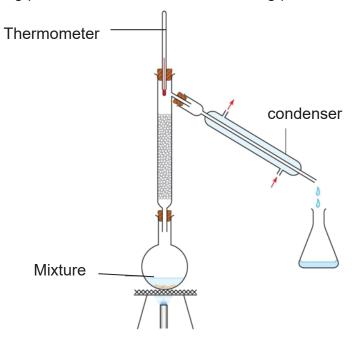


Fig. 1.1

(a)	State the name of this method of separation.
	[1]
(b)	What is the purpose of the water in the condenser?
	[1]
(c)	Predict the temperature of the thermometer when the first distillate appears in the beaker.
	Explain why.
	[5]

2 Table 2.1 shows the number of protons, electrons and neutrons of five particles Q to V.

Table 2.1

Particle	Number of protons	Number of neutrons	Number of electrons
Q	5	5	4
R	7	7	10
S	8	8	8
Т	9	11	9
U	10	10	10
V	16	16	16

3 Fig. 3.1 shows the extraction of iron from iron ore.

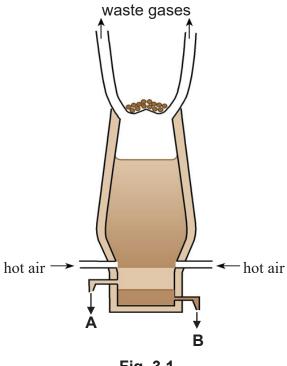


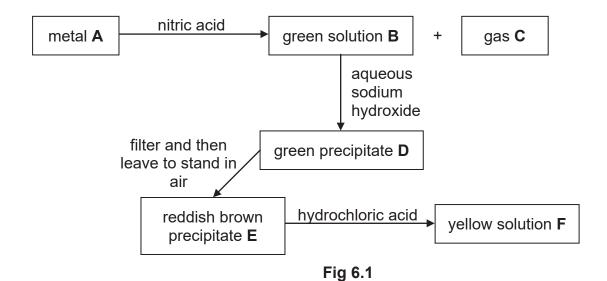
Fig. 3.1

	(a) Haematite is the	source of iron	produced in t	the Blast Furnac
--	----	--------------------	----------------	---------------	------------------

	(i)	Name the reducing agent for the reduction of haematite.
		[1
	(ii)	With the aid of a chemical equation, describe how your answer in 3(a)(i reduces haematite to molten iron.
		[3]
	(iii)	Besides haematite, name the other 2 raw materials that are added to the Blast Furnace.
		[2]
(b)	Name	e product A and state its usefulness as a substance floating above product B
		roz

Iron can be used to make stainless steel.

(c)


			ess steel can be made by adding elements such as chromium and nickel to improve its strength.
		(i)	What is the name given to mixtures such as stainless steel?
		(ii)	Explain, in terms of the arrangement of atoms, why stainless steel is harder than pure iron.
			[2]
4	A stu	ıdent ti	trates 25.0 cm³ an alkali of metal X , X OH, with sulfuric acid.
	He refully.	ealizes	that 20.0 cm ³ of 0.2 mol/dm ³ of sulfuric acid is required to neutralize the acid
	The	chemic	al equation for the reaction is shown below:
			$2XOH + H_2SO_4 \rightarrow X_2SO_4 + 2H_2O$
	(a)		an indicator that can determine the endpoint of the reaction and describe the change seen.
			[2]
	(b)	(i)	Calculate the number of moles present in 20.0 cm ³ of the sulfuric acid used.
			mol [1]

	(ii) Determine the concentration, in mol/dm³, of X OH used.		
		mol/dm³ [2]	
	(iii)	If the concentration of X OH used is 12.8 g/dm³, calculate the relative mass of X OH and, hence, determine the identity of X .	
		Relative mass of X OH:	
(c)	When	XOH is added to ammonium chloride, a gas is formed.	
	Name	e the gas formed and describe how to test for its identity.	
		[2]	

5

Hyd	rogen c	can form compounds with both metals and non-metals.			
For	exampl	le, it can form lithium hydride with lithium and also ammonia with nitrogen.			
(a)	What is the bonding found in lithium hydride?				
		[1]			
(b)	(i)	Draw the dot-and-cross diagram to show the arrangement of valence electrons found in lithium hydride and ammonia in the space below.			
		Lithium hydride:			
		[2			
		Ammonia:			
		7 Williania.			
		IO			
	415	[2]			
	(ii)	Explain, in terms of bonding, why lithium hydride exist as a solid while ammonia exist as a gas at room temperature.			
		[3]			

6 Fig. 6.1 describes the reactions of metal A.

(a)	Identify	the	following	substances.
-----	----------	-----	-----------	-------------

Α	
В	
С	
D	
E	
F	

(b) Describe how to test for gas C that is formed in the above reactions.

[6]