Section A: Structured Questions [45 marks]

1	(α)					[2]
	(a) description words			[3]		
		1 oonid			nts incorrectly state	
		2 ion	s npound	charg	re due to the different	
			•		nts incorrectly state solid	
		1 liqu 2 elei			the connecting atoms or	
		3 ato		mole	-	
		1 000	、		nts incorrectly state	
	2 compound		re due to the different			
			lecule		red shapes failing to	
				appre	ciate the line or as	
		Any o	order	atom		
					1 mark for every 3 correct	
					answers	
	(b)	(i)	Presence of mobile ions to	act as	Missing key terms of mobile ions act as	[1]
	(~)	(1)	charge carriers to enable		charge carriers. Students state free	r.1
			conduction of electricity		electrons which is reserved for metals.	
		(ii)	Heating A till it melts / A is	in	Students state electrolysis and	[1]
			molten state.		electroplating it as a method.	
			[Total: 5	5 marks]		
2	(a)	Differe	ent solubilities of compone	ents _d	Many students wrote solubility as a one-	[1]
		solven	ıt	````	word response. Failing to state solubility of	
			\sim	\mathbb{Z}	the dyes.	
	(b)	Contains blue, purple and orange			Most who got wrong failed to indicate blue	[1]
				as well as they felt it wasn't perfectly in line.		
	(c)	-	ite/Carbon in the pencil is in			[1]
		results	solvent and would not aff		pencil was used by only stating why ink is not used. Some used 'lead' as a term to	
			$() (\) $	1/0	explain about the carbon from pencil.	
	\land		Fotal: 3			
3	(a)	V	XXXX			
		$\langle \langle \rangle$	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Most could not recall how to draw the	
		$\langle \rangle$	Br X		bromine electrons properly. Left blank.	
		~			Legend stated only as hydrogen/bromine	[2]
			K X V			

	(b)				
		(i)	H ⁺	Students wrote equations of HBr or H ⁻ .	[1]
		(ii)	Colourless solutions starts to turn reddish - brown	Students described the displacement reaction itself rather than colour observations. Some stated yellow instead of reddish brown.	[1]
		(iii)	$Cl_2(g) + 2Br(aq) \rightarrow$ 2 $Cl^2(aq) + Br_2(aq)$ [1] – correct chemical formula/ions [1] – correct state symbols (2 nd mark is only awarded if the 1 st mark is given)	Very poorly done. 98% could not do this question and could not balance equation. Need to revisit this topic.	[2]
4	(a)	reduce Reaso form Z	ance reduced: ZnO has been ed [1] on: ZnO has lost an oxygen atom to Zn / oxidation number of Zn has ased from +2 in ZnO to 0 in Zn. [1]	[Total, 6 marks] substance reduced: most incorrectly state as just Zn, Reason: students are able to explain the loss of oxygen to identify the substance reduced. However, their phrasing is wrong using oxygen has been reduced from zinc oxide.	[2]
	(b)	(i)		most students who made mistakes drew orderly arranged atoms or did not differentiate the size of the atoms enough. the size of the atoms enough. Labelling might help.	[1]
		(ii) <	The different sized atoms disrupts the orderly arrangement [1] of pure metal. This makes it <u>harder for the layers to slide over</u> <u>one another</u> [1] thereby making it harder.	Most fail to get the full marks by either omitting <i>different size disrupts orderly</i> <i>arrangement</i> .	[2]
				[Total: 5 marks]	
5	(a)	1	$Vo. of moles of CuO = \frac{0.40}{80}$		[1]
		=	= 0.0050 moles		r.1

		(ii)	Mole ratio, CuO:H ₂ is 1:1, hence 0.0050 moles of H ₂ is required	Students fail to state why the value is same as a(i).	[1]
	(b)	(i)	No. of moles of hydrogen gas used $= \frac{165}{24000}$ $= 0.006875 \text{moles} \qquad [1]$ Mole ratio, CuO:H ₂ is 1:1 0.005 mole of CuO requires only 0.005 moles of H ₂ . However, 0.006875 moles of H ₂ is used. Hence H ₂ is in excess. [1] CuO is the limiting reagent. [1]	Quite a large number of students had not done this part as they forgot to change cm3 to dm3. They also had forgotten the formula. Lastly, they incorrectly associate CuO and H2 mole directly by looking which is more rather than by looking at amount of H2 available vs needed.	[3]
		(ii)	Mr of water vapour = $2 + 16 = 18$ Mole ratio of CuO:H ₂ O is 1.1 . <u>Hence 0.005mols of water vapour is</u> <u>formed</u> . [1] Mass of water vapour = $0.005 \times 18 = 100$	Quite a fair number of students erroneously used the amount of hydrogen used in a(i). to calculate the number of moles. 1m was given for method mark.	[2]
	\wedge	ſ		[Total: 7 marks]	
6	(a)	cha fror	e; In the same Period, <u>metallic</u> <u>tracter of elements decreases</u> <u>n left to right</u> of PT so W is more tallic than Z.	Most students were able to do this question. However the explanation needs improvement as they only say the Z is a halogen rather than showing less character of a metal.	[1]
	(b)	<u>eler</u>	e; <u>On moving down Group I</u> ments, the reactivity increases so s less reactive than W.	Most students could do this well.	[1]
	(c)	Fal <u>ele</u> <u>ele</u>	lse; <u>On moving down Group I</u> ements, the melting point of the ement decreases so V should have higher melting point than W.	Quite a fair number of students had forgotten trends of Grp 1	[1]
	(d)	<u>the</u> ato	se, <u>On moving down any group,</u> <u>number of electron shells in the</u> <u>ms of the element increases</u> so X puld have less electron shells than	Almost all students were able to answer this question well.	[1]

		(No mark for reason if 'true/false	' is			
		incorrect.)			[Total: 4 marks]	
7	(a)	A: barium chloride		A students	s could not identify the acid.	
		 B: hydrochloric acid C: barium sulfate D: hydrogen gas E: zinc chloride F: silver chloride 		HCI. Most p option. C most lef D all stude E some stu	s could not identify the acid as blaced Barium sulfate in this it this blank ents could identify this udents were able to identify this able to work backwards.	[6]
	(b)	$\begin{array}{l} 2 \text{AgNO}_3 \; (\text{aq}) + \text{ZnC}l_2 \; (\text{aq}) \rightarrow 2 \text{AgC}\\ \text{Zn}(\text{NO}_3)_2 \; (\text{aq})\\ \text{BaC}l_2 \; (\text{aq}) + \text{H}_2 \text{SO}_4 \; (\text{aq}) \rightarrow \text{BaSO}_2\\ 2 \text{HC}l \; (\text{aq})\\ 2 \text{HC}l \; (\text{aq}) + \text{Zn} \; (\text{s}) \rightarrow \; \text{ZnC}l_2 \; (\text{aq}) + \end{array}$	4 (s) -	 Most student could not write also wrote reaction can 	ts who could not do the above te a balanced equation. Some nonsensical response as the not go through.	[2]
			1	2-A	[Total: 8 marks]	
8	(a)	sodium sulfate Na ₂ SQ ₄ su potassium phosphate K ₃ PO ₄ pl silver chloride AgC <i>l</i> hy		ne of acid used nake salt furic acid osphoric acid drochloric d	name of the other compound used to make salt sodium oxide/hydroxide/carbona te potassium oxide/ hydroxide/carbonate silver nitrate calcium hydroxide	[3]
	(b)	The paint and plastic coating acts a barrier [1] to		be used to pre number did n	could identify why the paint can event rusting but quite a large not state how it acts as a r/ barrier from the reactants.	[2]

			ent / minimize oxyg coming into contac ly [1]					
	(c)	Sulfu	gen dioxide – moto ⁻ dioxide – fac nic eruptions			tly stated the gas incorrect respon	ses SO2 but CO se.	[2]
							[Total: 7 marks]	
	Sect mark		Free Response C	uestions [20				For Examiner's Use
9	(a)	Soluti seawa	on of sodium chlor ater	ide and		swimming pool, nly inferred not m		[1]
	(b)	They neutro	have same numbe have different ons, <u>C<i>I</i>-35 has 18</u> <u>has 20 neutrons.</u>	number o	f number in pr difference in	roton but did not the number of to show how	ed the the same elaborate on the neutron through they knew the	[1] [1]
	(c)	(i)			Table 8.1			
			name of ion	number of protons	number of neutrons	number of electrons	electronic structure	
			magnesium ion		12	10 lons mean that there is a difference between proton and electron. Mg loses 2 electrons	8	[2]
			chloride ion	S		18 Chlorine gains one electron	2,8,8	
	<	(ii)	charges [1], elect	etrons [1]		2+		[2]
			Most failed to drav	w the proper cł	narges and wro	ngly indicated the	e outermost shell	

	(d)	(i)			
	(-)	(')	Hydrogen and chlorine <u>share a</u> <u>pair of electrons</u> between them.	Most wrongly stated by just stating it has covalent bonds without describing further.	[1]
		(ii)	Magnesium chloride is a solid at room temperature as <u>a large</u> <u>amount of energy</u> is required to overcome the <u>strong electrostatic</u> forces of attraction <u>between</u> <u>oppositely charged ions</u> .	Most students failed to state everything to get full marks. Many confused between structure and bonding. Structure describes how the particles are packed and its movement and arrangement.	[1]
			Hydrogen chloride is a gas at room temperature as only a <u>small</u> <u>amount of energy</u> is required to overcome the <u>weak intermolecular</u> forces of attraction <u>between</u> <u>molecules.</u>	Q	[1]
10	(a)	(i)	Universal indicator in hydrochloric acid is red while it is purple in sodium hydroxide. Reject orange/yellow for hydrochloric acid and blue for sodium hydroxide	[Total : 10 marks] Orange and blue are synonymous for weak acid and alkalis	[2]
		(ii)	There are more H ⁺ ions than OH ⁻ ions in acid [1] There are more OH ⁻ than H ⁺ ions in alkaline solutions. [1]	Acids have both types of ions only that there are more of one type than the other. The converse is true.	[2]
	\langle		Add magnesium/sarbonate/øxide in excess to acid [1] Filter the mixture to obtain magnesium as residue and keep the filtrate [1] Heat the filtrate to saturate the solution and allow it to cool to allow crystals to form [1] Dry the crystals between sheets of filter paper [1]	By drawing out the reaction, students can visualise better and not omit the steps.	[4]
	(b)	[1]	f moles of NaOH = 0.02x1.5 = 0.03 eentration of HCl = 0.03 / 0.0250 [1] = 1.20 mol/dm ³		[2]
				[Total: 10 marks]	
11	(a)	(i)	Experiment 1 has a faster rate of reaction than experiment 2. / Experiment 1 took a faster time to complete than experiment 2.	Steeper gradient indicates a faster rate of reaction.	[1]
		(ii)	<u>Powdered</u> calcium carbonate has a <u>larger surface area</u> to volume	Most omitted to state which particle was the smaller one and assumed the reader to	[2]

· · · · ·				
		ratio / larger total surface area <u>exposed to collisions</u> . [1] Results in <u>higher frequency of</u> <u>effective collisions [1]</u> , thus greater speed of reaction.	know. Many used higher probability instead of frequency.	
		groater opera of reaction.	(
	(iii)	$CaCO_3(s) + 2HCl(aq) → CaCl_2(aq) + CO_2(g) + H_2O(l)$	Most could not recall reactions between acid and carbonates and the product obtained.	[2]
(b)	Volume of carbon clioxide relased (cmt) c + 5 - 9	2 4 Time (sec)	Sizeable number of students failed to label the correct term. Students failed to appreciate the half volume compared to first graph. Students did not follow the reaction speed of the first graph.	[1]
(c)	(i)	Exothermic reactions.	Heat increase is exothermic reaction	[1]
		Greater energy is given off when bonds of products are formed [1] then energy taken in from surrounding in breaking bonds [1] of reactants. Hence there is a net increase in temperature.	Students failed to appreciate how bonds of existing compunds need to be broken in order to form new bonds. Breaking of bonds require energy which is taken in (endo) from surroundings. Forming of bonds require the energy to be given out to surroundings (exo). Since final is exo it means that more energy is given off than taken in.	[2]
	(iii)	Using a pH meter.	accurately = use instrument to measure	[1]
			[Total: 10 marks]	

End of Paper