Section A: Structured Questions [45 marks]

	(b)				
		(i)	H^{+}	Students wrote equations of HBr or H^{-}.	[1]
		(ii)	Colourless solutions starts to turn reddish - brown	Students described the displacement reaction itself rather than colour observations. Some stated yellow instead of reddish brown.	[1]
		(iii)	$\begin{aligned} & \qquad \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Br}(\mathrm{aq}) \rightarrow \\ & 2 \mathrm{Cl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq}) \\ & \\ & \text { [1] - correct chemical } \\ & \text { formula/ions } \\ & \text { [1] - correct state symbols } \\ & \left(2^{\text {nd }}\right. \text { mark is only awarded if the } \\ & \left.1^{\text {st }} \text { mark is given }\right) \end{aligned}$	Very poorly done. 98\% could not do this question and could not balance equation. Need to revisit this topic.	[2]
				otal 6 marks]	
4	(a)		ance reduced: ZnO has been ed [1] ZnO has lost an oxygen atom to Zn / oxidation number of Zn has ased from +2 in ZnO to 0 in Zn . [1]	substance reduced: mostincorrectly state as just Zn . Reason: students are able to explain the loss of oxygen to identify the substance reduced.However, their phrasing is wrong using oxygen has been reduced from zinc oxide.	[2]
	(b)	(i)		moststudents who made mistakes drew orderly arranged atoms or did not differentiate the size of the atoms enough. the size of the atoms enough. Labelling might help.	[1]
			The different sized atoms disrupts the orderly arrangement [1] of pure metal. This makes it harder for the layers to slide over one another [1] thereby making it harder.	Most fail to get the full marks by either omitting different size disrupts orderly arrangement.	[2]
				[Total: 5 marks]	
5	(a)	(i)	$\mathrm{Mr} \text { of } \mathrm{CuO}=64+16=80$ No. of moles of CuO $\begin{aligned} & =\frac{0.40}{80} \\ & =0.0050 \text { moles } \end{aligned}$		[1]

| | | | |
| :--- | :--- | :--- | :--- | :--- |

		(No mark for reason if 'true/false' is incorrect.)			
				[Total: 4 marks]	
7	(a)	A: barium chloride B: hydrochloric acid C: barium sulfate D: hydrogen gas E: zinc chloride F: silver chloride	A students could not identify the acid. B students could not identify the acid as HCl . Most placed Barium sulfate in this option. C most left this blank D all students could identify this E some students were able to identify this but was not able to work backwards. F as above		[6]
	(b)	$\begin{aligned} & 2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{ZnCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{~s} \\ & \mathrm{Zn}_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\ & \mathrm{BaCl})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s}) \\ & 2 \mathrm{HCl}(\mathrm{aq}) \\ & 2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \end{aligned}$	Most studen could not wr also wrote reaction can)	Who could not do the above e balanced equation. Some onsensical response as the ot go through.	[2]
8			eof acid used ake salt uric acid phoric acid rochloric phoric acid	name of the othercompound used to makesalt $\left\|\begin{array}{l}\text { Sodium } \\ \text { oxide/hydroxide/carbona } \\ \text { te }\end{array}\right\|$potassium oxide/ hydroxide/carbonate silver nitrate calcium hydroxide	[3]
	(b)	The paint and plastic coating acts as a barrier [1] to	Most students be used to pr number did protective laye	ould identify why the paint can vent rusting but quite a large ot state how it acts as a barrier from the reactants.	[2]

	(d)	(i)	Hydrogen and chlorine share a pair of electrons between them.	Most wrongly stated by just stating it has covalent bonds without describing further.	[1]
		(ii)	Magnesium chloride is a solid at room temperature as a large amount of energy is required to overcome the strong electrostatic forces of attraction between oppositely charged ions. Hydrogen chloride is a gas at room temperature as only a small amount of energy is required to overcome the weak intermolecular forces of attraction between molecules.	Most students failed to state everything to get full marks. Many confused between structure and bonding. Structure describes how the particles are packed and its movement and arrangement.	[1] [1]
10	(a)	(i)	Universal indicator in hydrochloric acid is red while it is purple in sodium hydroxide. Reject orange/yellow fok hydrochloric acid and błue for sodium hydroxide	Orange and blue are synonymous for weak acid and alkalis	[2]
		(ii)	There are more H^{+}ions than OH^{-} ions in acid. [1] \qquad There are more OH^{-}than H^{+}ions in alkaline solutions. [1]	Acids have both types of ions only that there are more of one type than the other. The converse is true.	[2]
			Add magnesiumitsarbonate//6xide in excess to acid [1] Filter the mixture to obtain magnesiumlas residue and keep the filtrate [1] Heat the fittrate to saturate the solution abo allow it to cool to aHow crystals to form [1] Dry the crystals between sheets of filter paper [1]	By drawing out the reaction, students can visualise better and not omit the steps.	[4]
	(b)		$\begin{aligned} \text { of moles of } \mathrm{NaOH} & =0.02 \times 1.5=0.03 \\ \text { centration of } \mathrm{HCl} & =0.03 / 0.0250 \\ & =1.20 \mathrm{~mol} / \mathrm{dm}^{3} \end{aligned}$		[2]
				[Total: 10 marks]	
11	(a)	(i)	Experiment 1 has a faster rate of reaction than experiment $2 . /$ Experiment 1 took a faster time to complete than experiment 2.	Steeper gradient indicates a faster rate of reaction.	[1]
		(ii)	Powdered calcium carbonate has a larger surface area to volume	Most omitted to state which particle was the smaller one and assumed the reader to	[2]

End of Paper

