West Spring Secondary School Science Department – Mid-Year Exam [2018] <u>Marking Scheme</u>

Name of Setter(s): <u>Joel Lee</u> Title of Assessment: <u>Secondary 4 Express / 5 Normal (Academic)</u> Subject: <u>Science (Chemistry) 5076/5078</u> Duration: <u>1hr 45mins</u>

	Section A [20 marks]								
1	2	3	4	5	6	7	8	9	10
Α	С	Α	Α	В	В	В	С	Α	В
11	12	13	14	15	16	17	18	19	20
С	В	В	С	D	D	D	D	Α	В
							C)	

	Section B [45 marks]		
Q/No	Answer	Comments/ Suggestions to Markers	Marks
1(a)(i)	Oxides C and E	CAO	2
1(a)(ii)	Oxide A	CAO	1
1(a)(iii)	Oxide B	CAO	1
1(b)	lead(II)/aluminium/zinc oxide	CAO	1
1(c)	Any Group I oxide (sodium oxide, potassium oxide etc.)		1
2(a)	Oxygen	CAO	1
2(b)	It will be at approximately the <u>80cm³ mark.</u>	CAO	1
2(c)	Any 2: Nitrogen / Argon / Carbon dioxide / Water vapour	CAO	2
	The reaction is exothermic.	CAO	1
3(a)	It gives burns vigorously/may explode, signifying that a lot of heat is given out to the surroundings.	OWTTE	1
	Zinc oxide is <u>reduced</u> .		1
3(b)	Zn gains 2 electrons from Zn ²⁺ in ZnO to Zn.	CAO	1
	(Students need to specify no. of electrons to get the mark.)		-
	The nail will not rust in tubes B and C .	CAO	1
4(a)	There is no moisture/water in tube B, and	OWTTE	1
	There is <u>no oxygen in tube C</u> .	OWTTE	1

4(b)	Tube D .	CAO	1
5(a)	They have the same number of valence electrons.	CAO	1
5(b)	Lithium/sodium/potassium hydroxide and hydrogen gas.	CAO	2
5(c)	Rubidium/caesium/francium	CAO	1
5(d)	It is more reactive.	CAO	1
6(a)	The reaction is <u>endothermic</u> , because <u>heat needs to be</u> <u>supplied/heat is taken in</u> for the reaction to start	OWTTE	2
6(b)	Moles of oxygen = $2400 / 24000$ = 0.10 mol. Moles of MNO ₃ = 0.10 x 2 = 0.20 mol.	CAO	1
6(c)	Molar mass of one mol. of $MNO_3 = 17.0 / 0.2$ = 85 g/mol A_r of M = 85 - [14 + (3x16)]	CAO (ecf allowed)	1
	= 23 Therefore M is sodium.		1
6(d)	Insert a <u>glowing splint</u> into a test tube containing the gas. If it <u>relights</u> , the gas is oxygen.	САО	1
7(-)	Halogens (Group VII) and noble gases (Group Q)		1
7(a)	They have a fully filled valence shell, which confers stability.	CAO	<u> </u>
7(b)		CAO	1
7(c)	Mix <u>aqueous chlorine</u> and <u>aqueous potassium bromide</u> . The mixture of solutions will <u>turn from colourless to brown</u> as bromine is displaced. 2 KBr + $Cl_2 \rightarrow 2$ KCl + Br_2	CAO	1
			1
8(a)	A: iron B: sulfuric acid C: iron(II) sulfate D: hydrogen E: barium sulfate F: iron(II) hydroxide	1m each	6
8(b)	$Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$ $FeSO_4 + 2NaOH \rightarrow Na_2SO_4 + Fe(OH)_2$ $FeSO_4 + Ba(NO_3)_2 \rightarrow Fe(NO_3)_2 + BaSO_4$ (Any one)	CAO 1m for correct formula, 1m for balanced equation.	2

	Section C [20 marks]		
9(a)(i)	$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3CO_2$		1
9(a)(ii)	It is a redox reaction as Fe_2O_3 is reduced to Fe, and CO is oxidised to CO_2 . Fe ₂ O ₃ loses oxygen while CO gains oxygen.	1m for stating oxidised and reduced species 1m for explanation	2
9(a)(iii)	CO is the reducing agent.	CAO	1
	(Stainless) steel is one iron-based alloy.		1
9(b)	It is preferred as it is <u>stronger / more corrosion resistant</u> than pure iron.	CAO	1
	Y is <u>slag</u> .	CAO	1
9(c)	The <u>limestone added to the furnace decomposes to form calcium</u> oxide and carbon dioxide.	OWTTE	1
	The <u>calcium oxide reacts with acidic impurities / silicon dioxide in</u> the haematite to form slag.		1
	(1m can be given for the role of limestone in removing acidic impurities, without mention of its decomposition)	7	
	$CaO + SiO_2 \rightarrow CaSiO_3$	CAO	1
	Moles of Mg(NO ₃) ₂ = $7.4 / 148$ = 0.050 mol.		1
10(a)	Moles of $HNO_3 = 0.050 \times 2$ = 0.10 mol.	CAO	1
	Conc. of $HNO_3 = 0.107 (200/1000)$ = 0.50 mol/dm ³		1
	The reagents used are nitric acid and zinc metal/carbonate/oxide.		1
	1. Add excess zinc metal/carbonate/oxide to nitric acid.		1
10(b)	2. After the reaction is complete, <u>filter</u> to obtain zinc nitrate solution as the filtrate.		1
	3. <u>Heat</u> the solution to obtain a saturated solution.	OWTTE	1
	4. <u>Cool</u> the saturated solution to crystallise zinc nitrate.		1
	5. <u>Filter</u> to obtain crystals of zinc nitrate, <u>wash</u> with cold distilled water <u>and dry</u> .		1
10(c)	Sodium carbonate, the starting material, is <u>soluble in water</u> .	OWTTE	1